Ионный проектор
ИОННЫЙ ПРОЕКТОР (полевой ионный микроскоп, автоионный микроскоп), безлинзовый ионно-оптический прибор для получения увеличенного в несколько миллионов раз изображения поверхности твёрдого тела (чаще металла). С помощью ионного проектора можно различать детали поверхности, разделённые расстояниями около 0,2-0,3 нм, что даёт возможность наблюдать расположение отдельных атомов в кристаллической решётке. Ионный проектор изобретён в 1951 году немецким физиком Э. В. Мюллером, создавшим ранее электронный проектор.
Принципиальная схема ионного проектора показана на рисунке 1. Положительным электродом и одновременно объектом, поверхность которого изображается на экране, служит остриё тонкой проводящей иглы. Атомы (или молекулы) рабочего (изображающего) газа, заполняющего объём прибора, ионизуются в сильном электрическом поле вблизи поверхности острия, отдавая ему свои электроны. Возникшие положительные ионы приобретают под действием поля радиальное ускорение, устремляются к флуоресцирующему экрану (потенциал которого отрицателен) и бомбардирует его. Свечение каждого элемента экрана пропорционально плотности приходящего на него ионного тока. Поэтому распределение свечения на экране воспроизводит в увеличенном масштабе распределение вероятности образования ионов вблизи острия, отражающее структуру поверхности объекта. Масштаб увеличения m примерно равен отношению радиуса экрана R к радиусу кривизны острия r, т. е. m = R/r.
Реклама
Вероятность прямой ионизации атома (молекулы) газа электрическим полем оказывается значительной, если на расстояниях порядка размеров атома (молекулы) газа создаётся падение потенциала порядка ионизационного потенциала этой частицы (смотри Ионизация полем). Это значит, что напряжённость поля должна достигать 20-60 В/нм. Столь сильное поле легко создать у поверхности острия (на расстоянии 0,5-1 нм от неё) при достаточно малом радиусе кривизны поверхности (от 10 до 100 нм). Именно поэтому (наряду со стремлением к большим увеличениям) образец в ионном проекторе изготовлен в виде тонкого острия.
Вблизи острия электрическое поле неоднородно - над ступеньками кристаллической решётки или отдельными выступающими атомами его локальная напряжённость увеличивается: на таких участках вероятность ионизации полем выше и количество ионов, образующихся в единицу времени, больше. На экране эти участки отображаются в виде ярких точек. Иными словами, контрастность изображения поверхности определяется наличием у неё локального микрорельефа. Другим фактором, влияющим на контраст изображения, является электронная природа атома: так, например, в сплаве Со и Pt более электроотрицательные атомы Pt отображаются как яркие точки, а находящиеся рядом атомы Со не видны.
Изображение, формируемое ионным проектором, характеризуется низкой яркостью. Отдельный выступающий на поверхности образца атом «эмитирует» примерно от 103 до 108 ионов/с, которые формируют на экране изображение размером обычно около 1 мм2. Непосредственное фотографирование такого изображения при использовании водорода или гелия в качестве рабочего газа требует времени экспозиции порядка 10-103 с при потенциале на эмиттере от 20 до 4 кВ. Следовательно, для наблюдения и распознавания поверхностей, которые нестабильны при приложенном изображающем поле, и фотографирования изображений подобных поверхностей в доли секунды необходимо усилить яркость изображений.
Повышение плотности ионного тока (а, следовательно, яркости и контрастности изображения) за счёт повышения давления газа и увеличения динамической подачи газа к острию малоэффективно и имеет недостатки. Например, давление обычно не превышает 0,1 Па, иначе возникает газовый разряд, а усиленная подача газа может привести к разрушению экрана вследствие бомбардировки. Для получения ярких и контрастных изображений в ионном проекторе используются фотоэлектронные усилители яркости, волоконно-оптические пластины, микроканальные пластины, а также конвертирование ионного изображения в электронное.
Разрешающая способность ионного проектора δ находится в обратной зависимости от тангенциальной составляющей скорости иона, т. е. чем меньше кинетическая энергия ионизующейся частицы, тем выше δ. Поэтому остриё ионного проектора обычно охлаждается жидким водородом и азотом. В сильном электрическом поле атомы газа адсорбируются на участках с наибольшей локальной напряжённостью поля (так называемая полевая адсорбция). Их присутствие даёт возможность получать высокодетализированное изображение (рис. 2), т.к. полевая ионизация изображающих частиц облегчается при полевой адсорбции на ранее адсорбированных частицах. Чем выше потенциал ионизации частиц, тем большее разрешение они обеспечивают. Лучшими изображающими газами являются гелий и неон. Однако при этом требуются более сильные электрические поля, что ограничивает круг исследуемых объектов из-за полевого испарения (смотри Десорбция полем). Примесь к рабочему газу другого газа снижает величину изображающего поля за счёт понижения порогового поля полевой адсорбции.
Часто в ионном проекторе применяют внутренний микроканальный умножитель (МКУ), который конвертирует ионный ток в электронный, многократно его усиливает и обеспечивает яркое изображение на экране. МКУ позволили использовать разнообразные рабочие газы, понижать их давление и тем самым значительно расширили возможности ионного проектора.
Ионный проектор широко применяется для исследования атомной структуры поверхности металлов, сплавов и соединений. С его помощью определяются параметры поверхностной диффузии отдельных атомов и их элементарных ассоциатов; при этом выявляются механизмы перемещения, что недоступно для других методов. С помощью ионного проектора наблюдают и изучают двумерные фазовые превращения; в атомном масштабе исследуют внутренние дефекты в металлах и сплавах (вакансии, атомы в междоузлиях, дислокации, дефекты упаковки и др.); исследуют потенциалы межатомного взаимодействия, электронные свойства элементарных поверхностных объектов; анализируют объёмы образцов, посредством управляемого послойного удаления поверхностных атомов, используя полевое испарение при криогенных температурах.
Исследования с применением ионного проектора привели к радикальному пересмотру представлений о границах зёрен в поликристаллах. Сочетание ионного проектора с масс-спектрометром, регистрирующим отдельные ионы, привело к изобретению атомного зонда, расширившего аналитические возможности прибора.
Лит.: Мюллер Э., Цонь Т. Автоионная микроскопия. М., 1972; они же. Полевая ионная микроскопия, полевая ионизация и полевое испарение. М., 1980; Зенгуил Э. Физика поверхности. М., 1990.