Коллектор нефти и газа

КОЛЛЕКТОР нефти и газа, горная порода, способная вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки. Коллекторы подразделяются на промышленные, из которых возможно получение достаточных по величине притоков флюидов, и непромышленные, из которых получение таких притоков на данном этапе невозможно. Нижние пределы параметров коллекторских свойств (проницаемости и полезной ёмкости), определяющие промышленную оценку коллектора, зависят от состава флюида (для газа в связи с его подвижностью они значительно ниже, чем для нефти) и типа коллектора (поровый, биопустатный, кавернозный, трещинный или смешанный).

Формирование коллектора начинается со стадии седиментогенеза породы. Степень сохранности седиментационных признаков зависит, прежде всего, от минерального состава породообразующей части (матрицы) коллектора, минерального состава и формы распределения в поровом пространстве цемента, а также от мощности коллектора. Постседиментационная эволюция коллектора определяется новыми признаками, формирующимися под влиянием увеличивающихся давления и температуры, повышения концентрации флюидов, перераспределения цементирующего материала, изменения структуры пустотного пространства, растворения неустойчивых и образования стабильных минералов. Изменения протекают с разной интенсивностью, определяемой в первую очередь литологическим типом породы.

Реклама

Наиболее распространены терригенные и карбонатные коллекторы, с которыми связаны основные извлекаемые запасы углеводородов, реже встречаются глинисто-кремнисто-битуминозные, вулканогенные и вулканогенно-осадочные, магматические и др.

Основной масса терригенных коллекторов относится к поровому типу, характеризующемуся межзерновым пустотным пространством, их называют межзерновыми (гранулярными); встречаются также коллекторы со смешанным характером пустотного пространства (трещинно-поровые и даже кавернозно-поровые разности - если часть зёрен сравнительно легко выщелачивается). Свойства терригенных коллекторов зависят, прежде всего, от гранулометрического состава, формы и характера поверхности, слагающих породу зёрен, степени их отсортированности, окатанности, вида упаковки обломочных зёрен; количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам коллекторов порового типа. На фильтрационную способность терригенных коллекторов влияет также количество, минеральный состав и характер распределения глинистой примеси, снижающей проницаемость. Среди множества классификаций терригенных коллекторов наиболее популярная построена с учётом их гранулометрического состава, эффективной пористости и проницаемости. По этим параметрам различают шесть классов терригенных коллекторов с проницаемостью соответственно свыше 1000 мД (миллидарси), 1000-500, 500-100, 100-10, 10-1 и менее 1 мД (1 мД≈ 1·10-3 мкм2). Каждому типу песчано-алевритовых пород в пределах того или иного класса соответствует своя величина эффективной пористости. Породы, относящиеся к классу с проницаемостью менее 1 мД, в естественных условиях обычно содержат 90% и более остаточной воды и не являются коллекторами промышленного значения. Лучшими фильтрационными свойствами обладают кварцевые пески вследствие низкой сорбционной способности кварца. Наличие трещин спайности и таблитчатый габитус (облик) большинства минералов, слагающих полимиктовые песчаники, а также их более высокая сорбционная ёмкость значительно снижают коэффициент фильтрации флюидов.

Для карбонатных коллекторов характерен наиболее широкий спектр типов: гранулярные (оолитовые и обломочные известняки), трещинные (плотные известняки и доломиты), кавернозные (результат карста), биопустотные (органогенные известняки). Особенности карбонатных коллекторов - ранняя литификация, избирательная растворимость, склонность к трещинообразованию - обусловили большое разнообразие морфологии и генезиса пустот. Качество карбонатных коллекторов определяется первичными условиями седиментации, интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются дополнительные поры, каверны, трещины и крупные полости выщелачивания. Карбонатные коллекторы характеризуются крайней невыдержанностью свойств и их значительным разнообразием в зависимости от фациальных условий образования, что затрудняет их сопоставление. Фациальные условия образования карбонатных пород в большей мере, чем в терригенных, влияют на формирование коллекторских свойств. По минеральному составу карбонатные породы менее разнообразны, чем терригенные, но по структурно-текстурным характеристикам имеют гораздо больше разновидностей. Влияние вторичных преобразований особенно велико в породах с первично неоднородной структурой порового пространства (органогенно-обломочные разности). По характеру постседиментационных преобразований карбонатные породы отличаются от терригенных, прежде всего степенью уплотнения. Остатки биогермов с самого начала представляют практически твёрдые образования, и далее уплотнение идёт уже медленно. Карбонатный ил и мелкообломочные, комковато-водорослевые карбонатные осадки быстро литифицируются, пористость несколько сокращается, но значительный объём порового пространства «консервируется». Трещиноватость, как правило, составляющая в породах 0,1-1%, в карбонатных коллекторах может достигать 1,5-2,5%. При значительной мощности трещиноватых продуктивных горизонтов ёмкость трещин имеет существенное значение для оценки полезного объёма пластов. Дополнительная ёмкость карбонатных коллекторов трещинного типа создаётся также стилолитовыми швами, образование которых связано с неравномерным растворением под давлением. Глинистая корочка на поверхности стилолитовых швов представляет нерастворимый остаток породы. Часто горизонты развития стилолитов являются наиболее продуктивными в разрезе, что обусловлено вымыванием глинистых корочек. Наиболее значительные запасы углеводородов сосредоточены в кавернозно-поровом и поровом типах карбонатных коллекторов. Лучшими карбонатными коллекторами являются рифовые известняки, из которых были получены и рекордные дебиты нефти (десятки тысяч тонн в сутки).

В глинисто-кремнисто-битуминозных коллекторах преобладают трещинные и порово-трещинные типы. Породы характеризуются значительной изменчивостью минерального состава, неодинаковой обогащённостью органическим веществом. Микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли мД. В таких породах участки с повышенной пористостью и проницаемостью разнообразной формы возникают в процессе катагенеза (синхронно с генерацией нефтяных и газовых углеводородов и перестройкой структурно-текстурных особенностей минеральной матрицы породы). Считают, что в седиментогенезе образуются микроблоки породы, покрытые плёнкой сорбированного органического вещества. Колломорфный кремнезём, обволакивая агрегаты глинистых минералов, создаёт на их поверхности сложные комплексы с участием органического вещества и кремнезёма (возникают так называемые кремнеорганические рубашки). Процессы трансформации глинистых минералов и выделения связанной воды приводят к образованию мелких послойных трещин. Отдельные участки породы вследствие роста внутреннего давления пронизываются системой трещин вдоль поверхности «рубашек». При вскрытии таких коллекторов, как правило, отмечаются разуплотнение и аномально высокое пластовое давление. Повышению трещиноватости породы способствуют и тектонические процессы. При отборе нефти из таких пород трещины смыкаются - это коллекторы «одноразового использования». В них нельзя закачать газ или нефть, как это делают при строительстве подземных хранилищ в других типах пород.

Среди вулканогенных и вулканогенно-осадочных коллекторов наиболее часто встречаются трещинный и порово-трещинный типы. Эти коллекторы отличаются большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Нефть и газ в туфах, лавах и других разностях связаны с пустотами, которые образовались при выходе газа из лавового материала, или с вторичным выщелачиванием и трещиноватостью. Нефтеносность этих пород всегда вторична. Особенность таких коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах.

Формирование коллекторов в магматических и метаморфических породах связано с метасоматозом и выщелачиванием в результате гидротермальной деятельности, контракцией (усадкой) при остывании породы, дроблением по зонам тектонических нарушений. Основной объём пустот в магматических коллекторах принадлежит микротрещинам и микрокавернам. Пористость пород в большинстве случаев не превышает 10-11%. Проницаемость матрицы невысока, но в результате развития кавернозности и трещиноватости в целом проницаемость достигает сотен мД.

Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом геологической информации по месторождению. При изучении карбонатных коллекторов, кроме традиционных литологических и промыслово-геофизических методов, используют фото и ультразвуковой каротаж, метод капиллярного насыщения пород люминофорами и др.

Лит.: Справочник по геологии нефти и газа / Под редакцией Н. А. Еременко. М., 1984; Геология и геохимия нефти и газа / Под редакцией Б. А. Соколова. 2-е изд. М., 2004.