Кометы

КОМЕТЫ (от греческого κομήτης - волосатый, косматый), небольшие по размеру и массе небесные тела Солнечной системы, обращающиеся вокруг Солнца по сильно вытянутым орбитам и резко повышающие свою яркость при сближении с Солнцем. Вблизи Солнца кометы выглядят на небе как светящиеся шары, за которыми тянется длинный хвост (рис. 1). Кометы  представляют собой ледяные небесные тела (иногда называемые космическими айсбергами), яркое свечение которых создаётся рассеянием солнечного света и другими физическими эффектами. Полное название комет включает в себя имена открывателей (не более трёх), год открытия, прописную букву латинского алфавита и число, указывающие, в какой момент года была открыта комета, и префикс, обозначающий тип кометы (Р - короткопериодическая комета, С - долгопериодическая комета, D - разрушившаяся комета и пр.). Ежегодно в любительский телескоп можно наблюдать примерно 10-20 комет.

Исторически появление комет на небе считалось дурным предзнаменованием, предвещающим несчастья и катастрофы. Споры о природе комет (атмосферной или космической) продолжались на протяжении 2 тысяч лет и завершились лишь в 18 веке (смотри Кометная астрономия). Значительный прогресс в изучении комет был достигнут в 20 веке благодаря полётам к кометам космических аппаратов.

Реклама

Общие сведения о кометах. Кометы  вместе с астероидами, метеороидами и метеорной пылью относятся к малым телам Солнечной системы. Общее число комет в Солнечной системе чрезвычайно велико, оно оценивается величиной не менее 1012. кометы подразделяются на два основных класса: короткопериодические и долгопериодические с периодом обращения соответственно менее и более 200 лет. Общее число комет, наблюдавшихся в историческое время (в том числе на параболических и гиперболических орбитах), близко к 1000. Из них известно около 100 короткопериодических комет, регулярно сближающихся с Солнцем. Орбиты этих комет надёжно вычислены. Такие кометы называют «старыми», в отличие от «новых» долгопериодических комет, которые, как правило, наблюдались во внутренних областях Солнечной системы лишь однажды. Большинство короткопериодических комет входит в так называемые семейства планет-гигантов, находясь на близких к ним орбитах. Наиболее многочисленным является семейство Юпитера, насчитывающее сотни комет, среди которых известно свыше 50 самых короткопериодических комет с периодом обращения вокруг Солнца от 3 до 10 лет. Меньше наблюдаемых комет включают семейства Сатурна, Урана и Нептуна; к последнему, в частности, принадлежит знаменитая Галлея комета.

Кометы Основные резервуары, содержащие ядра комет, расположены на периферии Солнечной системы. Это Койпера пояс, находящийся вблизи плоскости эклиптики непосредственно за орбитой Нептуна, в пределах 30-100 а. е. от Солнца, и сферическое по форме Оорта облако, расположенное примерно на половине расстояния до ближайших звёзд (30-60 тысяч а. е.). Облако Оорта периодически испытывает гравитационные возмущения со стороны гигантских межзвёздных газово-пылевых облаков, галактического диска и звёзд (при случайных сближениях) и поэтому не имеет чётко выраженной внешней границы. Кометы  могут покидать облако Оорта, пополняя межзвёздную среду, и вновь возвращаться. Тем самым кометы играют роль своеобразных зондов ближайших к Солнечной системе областей Галактики.

Вследствие аналогичных возмущений некоторые тела из облака Оорта попадают во внутренние области Солнечной системы, переходя на высокоэллиптические орбиты. Эти тела при сближении с Солнцем наблюдаются как долгопериодические кометы. Под влиянием гравитационных возмущений со стороны планет (в первую очередь Юпитера и других планет-гигантов) они либо пополняют известные семейства короткопериодических комет, регулярно возвращающихся к Солнцу, либо переходят на параболические и даже гиперболические орбиты, навсегда покидая Солнечную систему. Основным источником короткопериодических комет служит пояс Койпера. Вследствие гравитационных возмущений Нептуном объектов пояса Койпера относительно небольшая доля населяющих пояс ледяных тел постоянно мигрирует во внутренние области Солнечной системы.

Движение комет по орбите. Кометы  движутся по орбитам с большим эксцентриситетом и наклонением к плоскости эклиптики. Движение происходит и в прямом (как у планет), и в обратном направлении. Кометы  испытывают сильные приливные возмущения при прохождении вблизи планет, что приводит к существенному изменению их орбит (и, соответственно, сложностям прогноза движений комет и точного определения эфемерид). Вследствие этих изменений орбит многие кометы выпадают на Солнце.

Результаты вычислений элементов орбит комет публикуются в специальных каталогах; например, каталог, составленный в 1997, содержит орбиты 936 комет, свыше 80% которых наблюдалось только один раз. В зависимости от положения на орбите блеск комет изменяется на несколько порядков, достигая максимума вскоре после прохождения перигелия и минимума в афелии. Абсолютная звёздная величина комет в первом приближении обратно пропорциональна R4, где R - расстояние от Солнца. Как правило, короткопериодические кометы обращаются вокруг Солнца не более нескольких сотен раз. Поэтому время их жизни ограничено и обычно не превышает 100 тысяч лет.

Активная фаза существования кометы заканчивается, когда исчерпывается запас летучих веществ в ядре или поверхность ядра кометы покрывается оплавленной пылеледяной коркой, возникающей вследствие многократных сближений кометы с Солнцем. После окончания активной фазы ядро кометы по своим физическим свойствам становится подобным астероиду, поэтому резкой границы между астероидами и кометами нет. Более того, возможен и обратный эффект: астероид может начать проявлять признаки кометной активности при растрескивании его поверхностной корки по тем или иным причинам.

Нерегулярность орбит комет приводит к плохо прогнозируемой вероятности их столкновений с планетами, что дополнительно усложняет проблему астероидно-кометной опасности. Столкновением Земли с осколком ядра комет, возможно, было вызвано тунгусское событие 1908 года (смотри Тунгусский метеорит). В 1994 наблюдалось выпадение на Юпитер (рис. 2) более 20 фрагментов комет Шумейкеров - Леви 9 (разорванной в ближайшей окрестности планеты приливными силами), что привело к катастрофическим явлениям в атмосфере Юпитера.

Строение и состав комет. Кометы  состоят из ядра, атмосферы (комы) и хвоста. Ядра нерегулярной формы имеют небольшие размеры - от единиц до десятков километров и, соответственно, очень малую массу, не оказывающую заметного гравитационного влияния на планеты и другие небесные тела. Ядра комет вращаются относительно оси, почти перпендикулярной плоскости их орбиты, с периодом от нескольких единиц до нескольких десятков часов. Для ядер комет характерна низкая отражательная способность (альбедо 0,03-0,04), поэтому вдали от Солнца кометы не видны. Исключение составляет комета Энке: период обращения этой кометы всего 3,31 года, она относительно мало удаляется от Солнца и её можно наблюдать на всём протяжении орбиты.

Кометы Остальные элементы кометной структуры образуются при сближении кометы с Солнцем. Вблизи перигелия орбиты за счёт сублимации вещества ядра и выноса пыли с его поверхности возникает кома. Размер пылинок в коме составляет в основном 10-7-10-6 м, но присутствуют и более крупные частицы. Кома представляет собой ярко светящуюся туманную оболочку поперечником свыше 100 тысяч км. Внутри комы в окрестности ядра выделяют наиболее яркий сгусток - голову кометы, а за пределами комы - водородную корону (гало). Из комы вытягивается хвост протяжённостью в десятки миллионов км: сравнительно слабосветящаяся полоса, не имеющая, как правило, чётких очертаний и направленная преимущественно в сторону, противоположную Солнцу. Интенсивная сублимация и вынос пыли создают реактивную силу; этот негравитационный эффект также оказывает влияние на нерегулярность кометных орбит.

Ядра комет обладают очень низкой средней плотностью, обычно не превышающей сотен кг/м3. Это свидетельствует о пористой структуре ядер (рис. 3), состоящих в основном из водяного льда и некоторых низкотемпературных конденсатов (углекислый, аммиачный, метановый льды) с примесью силикатов, графита, металлов, углеводородов и других органических соединений. Значительную долю ядра составляют пыль и более крупные каменистые фрагменты. Обилие водяного льда в составе комет объясняется тем, что молекула воды является самой распространённой в Солнечной системе.

Измерения, проведённые при сближении с кометой космических аппаратов, в целом подтвердили гипотезу о том, что ядро представляет собой «грязный снежный ком». Подобная модель ядра комет была предложена в середине 20 века американским астрономом Ф. Уипплом. Кома состоит в основном из нейтральных молекул воды, водорода, углерода (С2, С3), ряда радикалов (ОН, CN, CH, NH и др.) и светится благодаря процессам люминесценции. Она частично ионизована коротковолновым солнечным излучением, создающим ионы ОН+, СО+, СН+ и др. При взаимодействии этих ионов с плазмой солнечного ветра возникает наблюдаемое излучение в УФ и рентгеновской областях спектра.

При сублимации льдов в атмосферу одновременно интенсивно выносится пыль, за счёт которой в основном создаётся хвост кометы. Согласно классификации, предложенной ещё во 2-й половине 19 века Ф. А. Бредихиным, различают три типа кометных хвостов: I - прямые и узкие, направленные в противоположную от Солнца сторону; II - широкие, изогнутые и несколько отклонённые относительно направления от Солнца; III - прямые, короткие и сильно отклонённые от направления от Солнца. В 20 веке С. В. Орлов разработал физическую основу данной классификации в соответствии с механизмом образования хвоста. Хвост типа I создаётся плазмой, взаимодействующей с солнечным ветром, хвост типа II - частицами пыли субмикронных размеров, подверженными воздействию светового давления, хвост типа III - совокупностью мелких и более крупных частиц, испытывающих различное ускорение под действием гравитационных сил и светового давления.

Вследствие такого механизма образования положение в пространстве хвостов типа III менее чёткое, оно не совпадает с антисолнечным направлением и отклонено назад относительно орбитального движения. Иногда в структуре хвоста наблюдаются изогнутые линии - так называемые синдинамы, или даже веер синдинам, созданных пылинками разных размеров.

Изменения, происходящие с кометами в разных точках её орбиты и в течение жизни, в значительной степени определяются нестационарными процессами тепломассопереноса в пористом ядре и формированием неоднородной структуры поверхности, с которой происходит сублимация. Кинетическое моделирование этих процессов позволило получить представление о состоянии газа в коме. Вблизи ядер активных комет течение газа в полусфере, обращённой к Солнцу, близко к равновесному, плотность газа быстро падает по мере удаления от поверхности ядра. Из-за адиабатического расширения газа в межпланетный вакуум температура составляет несколько кельвинов на расстоянии от ядра около 100 км. В окрестности оси симметрии образуется хорошо выраженная струя (джет), обусловленная интенсивным выносом газа и пыли. (На изображении ядра кометы Галлея, полученном при пролёте вблизи него КА «Джотто», видны несколько джетов.) Такую неравномерность сублимации с поверхности ядра можно объяснить тепловыми деформациями, вызывающими разломы и трещины в поверхностной корке кометы.

Кометы В результате интенсивного выделения пыли короткопериодических комет вдоль её орбиты образуются пылевые торы. Эти торы периодически пересекает Земля в своём движении по орбите, что вызывает метеорные потоки.

Значение комет для космогонии. Происхождение комет, вероятно, связано с гравитационным выбросом ледяных тел из области образования планет-гигантов (смотри в статье Космогония). Поэтому исследования комет способствуют решению фундаментальной проблемы происхождения и эволюции Солнечной системы. Кометы  представляют большой научный интерес, прежде всего с точки зрения космохимии, поскольку содержат первичное вещество, из которого образовалась Солнечная система. Считается, что кометы и наиболее примитивный класс астероидов (углистые хондриты) сохранили в своём составе частицы протопланетного облака и газопылевого аккреционного диска. В качестве реликтов формирования планет (планетезималей) кометы претерпели наименьшие изменения в процессе эволюции. Поэтому информация о составе комет позволяет наложить достаточно строгие ограничения на диапазон параметров, используемых при разработке космогонических моделей.

В то же время, по современным представлениям, сами кометы могли сыграть важную роль в эволюции Земли и других планет земной группы в качестве источника летучих элементов и их соединений (в первую очередь воды). Как показали результаты математического моделирования, за счёт этого источника Земля могла получить количество воды, сопоставимое с объёмом её гидросферы. Примерно такие же количества воды могли получить Венера и Марс, что говорит в пользу гипотезы о существовании на них древних океанов, потерянных в ходе последующей эволюции. Кометы  рассматриваются также как возможные носители первичных форм жизни. Проблема возникновения жизни на планетах связывается, в частности, с транспортом вещества внутри и вне пределов Солнечной системы и миграционно-столкновительными процессами, ключевую роль в которых играют кометы.

Лит.: Орлов С. В. О природе комет. М., 1960; Добровольский О. В. Кометы. М., 1966; Physics and chemistry of comets. В.; N. Y., 1990; Yeomans D. Comets: а chronological history of observation; science, myth and folklore. N. Y., 1991; Comets in the post-Hailey era. Dordrecht, 1991. Vol. 1-2; Маров М. Я. Физические свойства и модели комет // Астрономический вестник. Исследования Солнечной системы. 1994. Т. 28. № 4-5; он же. Малые тела Солнечной системы и некоторые проблемы космогонии // Успехи физических наук. 2005. Т. 175. № 6.

М. Я. Маров.