Красные гиганты и сверхгиганты

КРАСНЫЕ ГИГАНТЫ И СВЕРХГИГАНТЫ, звёзды с высокой светимостью [до 105-106 светимостей Солнца (Lʘ)] и низкой эффективной температурой (3000-5000 К).

Согласно Йеркской спектральной классификации, они относятся соответственно к спектральным классам К и М и классам светимости III и I (или 0 в случае наиболее массивных красных сверхгигантов - так называемых гипергигантов). Радиусы красных гигантов достигают сотен радиусов Солнца (Rʘ), а красных сверхгигантов - тысяч Rʘ. Красные гиганты и сверхгиганты излучают преимущественно в красной и ИК-областях спектра. Характерная особенность спектров красных гигантов и сверхгигантов - присутствие линий излучения металлов, линий Н и К Са II, Са I, молекулярных полос поглощения. К типичным красным гигантам относится Альдебаран (светимость ≈ 160Lʘ, радиус ≈ 25Rʘ), к красным сверхгигантам - Бетельгейзе (≈ 7·104Lʘ, ≈ 700Rʘ).

Звёзды попадают в область диаграммы Герцшпрунга - Рессела, занимаемую красными гигантами и сверхгигантами, в результате расширения их оболочек после выгорания в ядрах звёзд водорода (смотри Эволюция звёзд). Красными гигантами становятся звёзды с массами от ≈ 1 массы Солнца (Мʘ) до ≈ (8-10)Мʘ. В красные сверхгиганты превращаются звёзды с массами от ≈ (8-10)Мʘ до ≈ 40Мʘ. Первоначально красные гиганты и сверхгиганты имеют гелиевые ядра, окружённые слоем, в котором происходит термоядерное горение водорода. Когда температура в центре звезды Тс достигает ≈ 2·108 К, начинается горение гелия. Выгорание гелия приводит к образованию углеродно-кислородных ядер (рис.), окружённых двумя неустойчивыми слоями горения - гелиевым и водородным (так называемые гиганты асимптотической ветви). Вещество в ядрах красных гигантов вырождено.

Реклама

Для красных гигантов и сверхгигантов характерно интенсивное истечение вещества (звёздный ветер), поток которого может достигать 10-5-10-4Мʘ в год. Звёздный ветер возникает под действием давления излучения, пульсационной неустойчивости, ударных волн в коронах звёзд. Потеря вещества и его охлаждение могут приводить к возникновению огромных газово-пылевых околозвёздных оболочек, полностью поглощающих видимое излучение звёзд.

Такие объекты излучают в ИК-диапазоне спектра (так называемые OH/IR-звёзды).

Красные гиганты и сверхгигантыГорение водорода и гелия в слоевых источниках приводит к увеличению масс ядер звёзд; ядра сжимаются и Тс возрастает. Однако у красных гигантов с исходными массами ≤(8-10)Мʘ потеря вещества приводит к тому, что массы их вырожденных углеродно-кислородных ядер не достигают значения, при котором возможно возгорание углерода, и они превращаются в белые карлики с массами ≤Мʘ, пройдя стадию планетарной туманности. В ядрах более массивных звёзд последовательно выгорают углерод, кислород, неон, магний, кремний, и процесс нуклеосинтеза завершается образованием железных (56Fe) ядер с массой ≈ (1,5-2)Мʘ, которые коллапсируют с образованием нейтронных звёзд или чёрных дыр. Коллапсирующие красные сверхгиганты проявляются в качестве сверхновых звёзд II типа. Время, которое звёзды проводят на стадии красных гигантов или красных сверхгигантов, составляет около 10% полного времени их жизни.

Среди красных гигантов и сверхгигантов наблюдаются переменные звёзды различных типов: мириды, полуправильные переменные и др. с периодами пульсаций от десятков суток до нескольких лет и вариациями блеска до нескольких звёздных величин. Пульсации могут быть как радиальными, так и нерадиальными. На пульсации могут налагаться распространяющиеся в оболочках звёзд ударные волны.

Звёзды с химическим составом, близким к солнечному, с исходными массами ≥40Мʘ не достигают в ходе эволюции стадии красного сверхгиганта, поскольку уже на стадии горения водорода в ядре теряют большую часть водородной оболочки и перемещаются в область диаграммы Герцшпрунга - Рессела, занимаемую горячими звёздами (с эффективной температурой до 105 К). Звезда может также покинуть область красных гигантов или сверхгигантов и переместиться в область более горячих звёзд, если она входит в состав тесной двойной системы и теряет оболочку в результате заполнения полости Роша.

Лит.: Зельдович Я. Б., Блинников С. П., Шакура Н. И. Физические основы строения и эволюции звезд. М., 1981; Засов А. В., Постнов К. А. Общая астрофизика. Фрязино, 2006.

Л. Р. Юнгельсон.