Жидкостный ракетный двигатель

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД), реактивный двигатель, не использующий для работы окружающую среду и работающий на жидком ракетном топливе. Может функционировать в атмосфере и в космическом (межпланетном) пространстве.

ЖРД - основной тип двигателей на космических кораблях, широко применяется также в высотных исследованиях и боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и др.

По назначению различают ЖРД основные (маршевые), разгонных блоков, верхних ступеней, корректирующие, тормозные, рулевые, микроракетные (могут работать в импульсном режиме). Топливо ЖРД может быть однокомпонентным и двухкомпонентным (горючее и окислитель); большинство современных ЖРД работают на двухкомпонентном топливе. ЖРД состоит из камеры сгорания (КС), сопла, турбонасосного агрегата подачи топлива, газогенератора, системы автоматики, органов регулирования, системы зажигания, телеметрических датчиков, вспомогательных агрегатов (теплообменников, рулевых приводов и др.), рамы и др. Ведутся работы по созданию трёхкомпонентных ЖРД.

Реклама

Горючее и окислитель впрыскиваются под давлением в КС через форсунки, перемешиваются, испаряются и воспламеняются. Воспламенение (зажигание) топлива может осуществляться химическими, пиротехническими и электрическими средствами. Топливо после воспламенения горит при высоких давлениях (в некоторых случаях до 15-25 МПа и более). При горении топлива образуются газообразные продукты сгорания (рабочее тело), нагретые до температуры 3700-3900 К, которые истекают из камеры сгорания в окружающее пространство через сопло. Для целостности конструкции КС при такой температуре необходимо непрерывное её охлаждение. Оно может осуществляться, например, с помощью горючего, протекающего перед поступлением в смесительную головку по каналам внешней системы охлаждения камеры сгорания. Такой способ охлаждения называется регенеративным. По мере движения продуктов сгорания по длине сопла их температура и давление уменьшаются, а скорость возрастает, переходя порог скорости звука в минимальном (критическом) сечении сопла. На выходе из сопла скорость истечения достигает 2700-4500 м/с. Тяга, создаваемая каждым килограммом газов, вытекающих из двигателя в 1 с, называется удельным импульсом тяги. Чем выше скорость истечения, тем больше удельный импульс и, следовательно, тем совершеннее топливо и двигатель. Различают ЖРД с турбонасосной подачей топлива без дожигания продуктов сгорания (открытая схема), в котором продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогательные сопла (давление в камерах сгорания 4,9-7,8 МПа), и ЖРД с дожиганием (закрытая, или замкнутая, схема), в котором продукты газогенерации после срабатывания в турбине направляются в камеру ЖРД для дожигания. Такие ЖРД не имеют потерь удельного импульса, обусловленных необходимостью привода в действие турбонасосного агрегата, и уровень давления в КС достигает 14,7-26,5 МПа.

Историческая справка. Принципиальная схема ЖРД разработана К. Э. Циолковским в 1903 году, доказавшим возможность использования ЖРД для полётов в космос. Учёный также указал наиболее выгодные ракетные топлива и исследовал вопросы устройства основных агрегатов. Практические работы по созданию были начаты в 1921 в США Р. Годдардом, осуществившим в 1926 первый в мире запуск ракеты с ЖРД. В конце 1920-х - начале 1930-х годов к разработке ЖРД приступили в СССР, Германии и других странах. В 1931 были испытаны первые российские ЖРД - ОРМ (опытный ракетный мотор) и ОРМ-1, созданные В. П. Глушко в ленинградской Газодинамической лаборатории (ГДЛ). В 1933 испытана двигательная установка ОР-2 конструкции Ф.А. Цандера, а двигатель-10, созданный московской Группой изучения реактивного движения (ГИРД), обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны в СССР и США появились опытные образцы ЖРД с тягой до нескольких сотен кг, предназначенные для экспериментальных ЛА. В Германии во время 2-й мировой войны в процессе проводившихся интенсивных работ в области ракетной техники были созданы разнообразные типы ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД зенитной управляемой ракеты «Вассерфаль» и баллистические ракеты Фау-2. Первыми серийными российскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ-ОКБ.

Дальнейшее развитие ЖРД определили начатые в середине 1950-х годов в СССР и США программы по созданию межконтинентальных баллистических ракет и ракет-носителей (PH). Для их реализации были созданы мощные, экономичные и компактные ЖРД, работающие на кислородно-керосиновом топливе. В 1960-х годах созданы ЖРД, работающие на высококипящих топливах, и кислородно-водородные ЖРД. Впервые идея замкнутой схемы была разработана в конце 1950-х годов в СССР в НИИ-1 (ныне Исследовательский центр имени М. В. Келдыша) и реализована в 1960. Эти ЖРД с середины 1960-х годов широко применяются на PH (например, «Протон», Н-1). Наряду с мощными маршевыми ЖРД созданы многочленные ЖРД средней и малой тяги.

В 1970-90-х годах создан один из самых мощных в мире четырёхкамерных ЖРД - РД-170 (давление в камере сгорания 24,5 МПа, тяга на земле/в вакууме 7200/7900 кН) для первых ступеней ракетно-космического комплекса «Энергия - Буран» и его модификации РД-171 для PH «Зенит», а также высокоресурсный маршевый двигатель РД-0120 тягой 1961 кН для 2-й ступени PH «Энергия» на энергоёмких компонентах топлива (кислород - керосин); на стратегической ракете Р-36М («Сатана») установлен двигатель РД-264 тягой 4520 кН с давлением в камере сгорания 20,6 МПа. Для орбитального корабля «Буран» впервые в мировой практике для космического аппарата использован криогенный окислитель - жидкий кислород и горючее - синтетической углеводород синтин, что существенно повысило энергетические возможности орбитального корабля и сделало его эксплуатацию более безопасной и экологически чистой. В 2001 успешно проведено первое огневое испытание кислородно-керосинового двигателя РД-191 (замкнутая схема), созданного для 1-й ступени семейства российских PH «Ангара»; в 2005 разработан четырёхкамерный ЖРД РД-0124 (замкнутая схема) для установки на 3-ю ступень PH «Союз-2-1 Б». Крупнейшие из зарубежных организаций, занятых разработкой ЖРД, находятся в США. Ведущая фирма - «Rocketdyne», разработавшая: в 2000 кислородно-водородный двигатель RS-68 (открытая схема, тяга 3230 кН) для установки на ракете Delta 4, в 2002 - кислородно-водородный ЖРД RS-83 (замкнутая схема) тягой 2900 кН в рамках программы НАСА «Космическая пусковая инициатива» SLI (Space Launch Initiative).

Большинство российских космических ЖРД, обеспечивших полёты первых российских искусственных спутников Земли, искусственных спутников Солнца, Луны, Марса, автоматических станций на Луну, Венеру и Марс, космических кораблей, всех геофизических и других ракет в 1949 - 70-х годах, создано под руководством В. П. Глушко, А. М. Исаева, С. А. Косберга, М. В. Мельникова и других конструкторов. ЖРД получили широкое развитие в США, Великобритании, Франции и других странах.

Дальнейшее развитие ЖРД связано с поиском и освоением новых топлив и разработкой новых технических принципов, обеспечивающих дальнейшее увеличение кпд и уменьшение габаритов и массы ЖРД. Ведутся работы над созданием двигательных установок для многоразовых средств выведения на базе ЖРД и воздушно-реактивных двигателей.

Лит.: Основы теории и расчета жидкостных ракетных двигателей / Под редакцией В. М. Кудрявцева. 4-е изд. М., 1993; Добровольский М. В. Жидкостные ракетные двигатели: основы проектирования. 2-е изд. М., 2005.

С. В. Мосолов.