Аксиоматический Метод

АКСИОМАТИЧЕСКИЙ МЕТОД - метод построения научной теории, при котором выбирается ряд исходных утверждений, называемых аксиомами, а дальнейшие утверждения (теоремы) получаются из них с помощью чисто логических рассуждений (доказательств). Классический образец применения аксиоматического метода – изложенная в «Началах» Евклида (около 300 года до нашей эры) аксиоматическая система, которая охватывала всю известную в то время математику. Влияние аксиоматического метода распространилось и на другие области знания: физику, биологию, философию, богословие.

На протяжении многих столетий «Начала» Евклида были единственным примером аксиоматической теории. Начиная с 19 века, создаются новые теории, например Лобачевского геометрия, аксиоматические теории действительных и натуральных чисел. В начале 20 века были построены аксиоматические теории множеств, повлиявшие на развитие всей математики.

Формальное определение аксиоматической теории было дано Д. Гильбертом. При формальном описании теории задаётся её язык (правила построения выражений различных типов, в том числе формул, которые соответствуют содержательным утверждениям), выделяется класс формул, называемых аксиомами теории, и описываются правила вывода, позволяющие строить доказательства теорем. Доказательство есть последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих по одному из правил вывода. Теория называется непротиворечивой, если в ней нельзя получить противоречие, т. е. отрицания её теорем не являются теоремами; и полной, если для любой формулы А, либо А, либо отрицание А является теоремой. При построении формальных теорий вопрос о непротиворечивости является ключевым. Для установления непротиворечивости обычно используется метод интерпретаций. При синтаксической интерпретации теории Т выбирается другая теория Т1, непротиворечивость которой предполагается известной; интерпретация переводит формулы Т в формулы Т1, а теоремы Т в теоремы Т1. При семантической интерпретации строится модель теории: теоремы превращаются в истинные содержательные утверждения об объектах некоторого универсума. Если теория имеет модель, то она непротиворечива. Путём интерпретации доказательство непротиворечивости евклидовой геометрии сводится к доказательству непротиворечивости теории действительных чисел, а доказательство непротиворечивости геометрии Лобачевского - к доказательству непротиворечивости евклидовой геометрии.

Реклама

Вопросы о непротиворечивости стали особенно актуальны в начале 20 века после обнаружения парадоксов множеств теории. В связи с этим в начале 20 века Д. Гильбертом выдвинута программа обоснования математики, целью которой было доказательство непротиворечивости формальных теорий, использующих бесконечные множества. Программа Гильберта существенно переосмыслена после открытий К. Гёделя (1931-32). Для любой непротиворечивой теории S, содержащей арифметику и заданной алгоритмически перечислимым списком аксиом, установлено, что теория S неполна (теорема Гёделя о неполноте) и непротиворечивость теории S нельзя доказать средствами самой теории S (теорема Гёделя о непротиворечивости). Первый результат, по существу, означает, что окончательная формализация научного знания невозможна, и в любой достаточно сильной аксиоматической теории имеются проблемы, которые неразрешимы в самой этой теории. Второй результат показывает, что такой проблемой является непротиворечивость теории S, и для её доказательства требуются неарифметические средства. С помощью дополнительных принципов были получены доказательства непротиворечивости арифметики, анализа и ряда других теорий. Была усилена теорема Гёделя о неполноте: найдены арифметические утверждения, которые истинны, но недоказуемы в формальной арифметике.

Формальная аксиоматическая теория называется алгоритмически разрешимой, если для любой формулы А существует алгоритм, который за конечное число шагов определяет, является ли формула А теоремой. Программа Гильберта подразумевала, что формальное доказательство теорем можно механизировать. Однако неразрешима даже простейшая теория - исчисление предикатов, неразрешима всякая непротиворечивая теория, содержащая арифметику, и многие другие теории. С другой стороны, обнаружены и нетривиальные примеры разрешимых теорий, например евклидова геометрия и теория конечных полей.

Альтернативным аксиоматическим методом является генетический (конструктивный) метод, при котором новые научные законы находятся опытным путём, а не как логические следствия известных результатов. Генетический метод развивался в 20 веке в интуиционистском (французский математик Г. Вейль, голландский математик Л. Брауэр) и конструктивном (А. А. Марков) направлениях математики.

Аксиоматический метод сыграл и продолжает играть важную роль в основаниях математики.

Лит.: Бурбаки Н. Начала математики. М., 1965. Ч. 1. Кн. 1: Теория множеств; Клини С. К. Математическая логика. М., 1973; Новиков П. С. Элементы математической логики. М., 1973; Ефимов Н.В. Высшая геометрия. 6-е изд. М., 1978; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1982; Справочная книга по математической логике: В 3 часть М., 1982; Успенский В. А. Что такое аксиоматический метод? 2-е изд. Ижевск, 2001.

В. Б. Шехтман.