Атомная электростанция

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, на которой для получения электроэнергии используется теплота, выделяющаяся в ядерном реакторе в результате контролируемой цепной реакции деления ядер тяжёлых элементов (в основном 233U, 235U, 239Pu). Теплота, образующаяся в активной зоне ядерного реактора, передаётся (непосредственно либо через промежуточный теплоноситель) рабочему телу (преимущественно водяному пару), которое приводит в действие паровые турбины с турбогенераторами.

АЭС в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и другими газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1 г изотопов U или Pu высвобождается 22500 кВтч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, например, биологической защиты (смотри Радиационная безопасность), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими, так называемый реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ

На АЭС с одноконтурной схемой (рис., а) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель - рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе — в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем - РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) - ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45-50%.

При двухконтурной схеме (рис., б) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом - водяной пар. Этот тип реакторов обозначают как ВВЭР - водо-водяной энергетический реактор (PWR - Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR - Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (смотри Реактор-размножитель).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник - пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС большое внимание уделяют очистке теплоносителя, поскольку имеющиеся в нём естественные примеси, а также продукты коррозии, накапливающиеся в процессе эксплуатации оборудования и трубопроводов, являются источниками радиоактивности. Степень чистоты теплоносителя во многом определяет уровень радиационной обстановки в помещениях АЭС.

АЭС практически всегда строят вблизи потребителей энергии, т.к. расходы на транспортировку ядерного топлива на АЭС, в отличие от углеводородного топлива для ТЭС, мало влияют на себестоимость вырабатываемой энергии (обычно ядерное топливо в энергетических реакторах заменяют на новое один раз в несколько лет), а передача как электрической, так и тепловой энергии на большие расстояния заметно повышает их стоимость. АЭС сооружают с подветренной стороны относительно ближайшего населённого пункта, вокруг неё создают санитарно-защитную зону и зону наблюдения, где проживание населения недопустимо. В зоне наблюдения размещают контрольно-измерительную аппаратуру для постоянного мониторинга окружающей среды.

АЭС - основа ядерной энергетики. Главное их назначение - производство электроэнергии (АЭС конденсационного типа) или комбинированное производство электроэнергии и тепла (атомные теплоэлектроцентрали - АТЭЦ). На АТЭЦ часть отработавшего в турбинах пара отводится в так называемые сетевые теплообменники для нагревания воды, циркулирующей в замкнутых сетях теплоснабжения. В отдельных случаях тепловая энергия ядерных реакторов может использоваться только для нужд теплофикации (атомные станции теплоснабжения - ACT). В этом случае нагретая вода из теплообменников первого-второго контуров поступает в сетевой теплообменник, где отдаёт тепло сетевой воде и затем возвращается в контур.

Одно из преимуществ АЭС по сравнению с обычными ТЭС - их высокая экологичность, сохраняющаяся при квалифицированной эксплуатации ядерных реакторов. Существующие барьеры радиационной безопасности АЭС (оболочки твэлов, корпус ядерного реактора и т.п.) предотвращают загрязнение теплоносителя радиоактивными продуктами деления. Над реакторным залом АЭС возводится защитная оболочка (контеймент) для исключения попадания в окружающую среду радиоактивных материалов при самой тяжёлой аварии - разгерметизации первого контура, расплавлении активной зоны. Подготовка персонала АЭС предусматривает обучение на специальных тренажёрах (имитаторах АЭС) для отработки действий, как в штатных, так и в аварийных ситуациях. На АЭС имеется ряд служб, обеспечивающих нормальное функционирование станции, безопасность её персонала (например, дозиметрический контроль, обеспечение санитарно-гигиенических требований и др.). На территории АЭС создают временные хранилища для свежего и отработанного ядерного топлива, для жидких и твёрдых радиоактивных отходов, появляющихся при её эксплуатации. Всё это приводит к тому, что стоимость установленного киловатта мощности на АЭС более чем на 30% превышает стоимость киловатта на ТЭС. Однако стоимость отпускаемой потребителю энергии, выработанной на АЭС, ниже, чем на ТЭС, из-за очень малой доли в этой стоимости топливной составляющей. Вследствие высокой экономичности и особенностей регулирования мощности АЭС обычно используют в базовых режимах, при этом коэффициент использования установленной мощности АЭС может превышать 80%. По мере увеличения доли АЭС в общем энергетическом балансе региона они могут работать и в манёвренном режиме (для покрытия неравномерностей нагрузки в местной энергосистеме). Способность АЭС работать длительное время без смены топлива позволяет использовать их в удалённых регионах. Разработаны АЭС, компоновка оборудования которых основана на принципах, реализуемых в судовых ядерных энергетических установках (смотри Атомоход). Такие АЭС можно разместить, например, на барже. Перспективны АЭС с ΒΤΓΡ, вырабатывающих тепловую энергию для осуществления технологических процессов в металлургическом, химическом и нефтяном производствах, при газификации угля и сланцев, в производстве синтетического углеводородного топлива. Срок эксплуатации АЭС 25-30 лет. Вывод АЭС из эксплуатации, демонтаж реактора и рекультивация её площадки до состояния «зелёной лужайки» - сложное и дорогостоящее организационно-техническое мероприятие, осуществляемое по разрабатываемым в каждом конкретном случае планам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 году в г. Обнинск. В 1956 году вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 - АЭС в Шиппингпорте в США (60 МВт). В 1976 пущена первая в мире АТЭЦ - Билибинская (Чукотский автономный округ). Массовое строительство крупных экономичных АЭС началось во 2-й половине 1960-х годов. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). К началу 21 века во всём мире действовало около 440 ядерных реакторов суммарной мощностью более 300 ГВт, в том числе около 110 реакторов - в США, свыше 55 - во Франции, 50 - в Японии, 35 - в Великобритании, 29 - в России. Установленная мощность крупных АЭС достигает нескольких тысяч мегаватт; например, в России - Ленинградская (4000 МВт, 1981), Курская (4000 МВт, 1986), Нововоронежская (2455 МВт, 1980), Смоленская (2000 МВт, 1985), Калининская (2000 МВт, 1986) атомные электростанции.

Лит.: Маргулова Т. Х. Атомные электрические станции. 5-е изд. М., 1994; Стерман Л. С. Тепловые и атомные электрические станции. 3-е изд. М., 2004.

В. И. Лелеков.

Связанные статьи

Предыдущая:
Атомная физика