Динамическая система

ДИНАМИЧЕСКАЯ СИСТЕМА, математическая модель эволюции реальной (физической, биологической, экономической и др.) системы, состояние которой в любой момент времени однозначно определяется её начальным состоянием.

Историческая справка. Основатели теории динамической системы - А. Пуанкаре и А. М. Ляпунов. В конце 19 - начале 20 века они обнаружили и исследовали класс задач (в небесной механике, в теории фигур равновесия вращающейся жидкости и т.д.), в которых необходимо было знать поведение не одного отдельно взятого решения х(t) системы обыкновенных дифференциальных уравнений (ОДУ), а всех (или очень многих) решений, соответствующих различным начальным состояниям реальной (например, физической) системы. В этом случае х(t) можно представить как кривую в пространстве всевозможных состояний (т. е. значений векторов х) и воспользоваться геометрическими свойствами этой кривой для понимания и описания свойств решения х(t). Такая кривая называется фазовой траекторией.

В 1-й трети 20 века теория динамической системы развивалась в работах ряда математиков. Наибольшее значение имели работы А. А. Андронова, который осознал и показал на важных примерах, что теория динамической системы эффективна для исследования нелинейных процессов в природе и в лаборатории. К этому времени стала понятна необходимость изучения нелинейных задач, так как линейный математический аппарат часто не в состоянии описать реальные процессы. Андронов описал автоколебания с помощью предельных циклов Пуанкаре и очертил контуры новой науки  -  нелинейной  динамики. Вместе  с Л. С. Понтрягиным он ввёл понятие грубой системы, нечувствительной к малым изменениям параметров. Такая система не меняет резко свойств при малых изменениях параметров, т. е. её состояния до и после изменения параметров топологически тождественны (эквивалентны). Грубые системы заполняют открытые области в функциональном пространстве всех динамических систем. Вне этих областей и, в частности, на их границах лежат негрубые системы. Проход через границу сопровождается бифуркацией - сменой структуры динамической системы. В семействе динамических систем, зависящих от параметра, зная структуру динамической системы при начальном значении параметра и все бифуркации, можно однозначно предсказать её структуру при конечном значении параметра.

Реклама

Во 2-й половине 20 века Д. В. Аносов, В. И. Арнольд, Р. Боуэн, Р. Мане, Я. Г. Синай, С. Смейл, С. Хаяси, Л. П. Шильников и др. развили идеи Андронова и создали глубокую и стройную теорию динамической системы, которая даёт верные представления о природе детерминистских процессов и позволяет исследовать модели реальных систем.

Характеристики динамической системы. Определение динамической системы включает в себя пространство состояний {х} и зависящий от времени t оператор (закон) эволюции φt, по которому система из начального состояния х0 приходит в состояние xt в момент времени t. Состояние динамической системы описывают набором переменных х, выбираемых из соображений естественности их интерпретации, простоты описания, симметрии и т. п. Множество состояний (фаз) динамической системы образует фазовое пространство, в котором каждому состоянию отвечает точка, а эволюция изображается движением точки по фазовой траектории - кривой, вложенной в фазовое пространство. Например, движение n частиц под действием сил притяжения описывается в фазовом пространстве множеством всех наборов координат и скоростей этих частиц, а оператор эволюции определяется решением соответствующей системы ОДУ.

Особенности эволюции системы проявляются в типе фазовых траекторий. В частности, состоянию равновесия динамической системы соответствует вырожденная траектория - точка в фазовом пространстве, периодическому движению - замкнутая кривая, квазипериодическому движению, имеющему в спектре m базовых частот, - кривая на m-мерном торе, вложенном в фазовое пространство. Стационарному режиму (установившемуся движению) диссипативной системы соответствует аттрактор - множество траекторий, притягивающих к себе все близкие траектории. Установившимся периодическим колебаниям соответствует предельный цикл - изолированная (в фазовом пространстве) замкнутая траектория; хаотическим автоколебаниям отвечает обычно странный аттрактор - притягивающее множество, состоящее из неустойчивых  траекторий.

По характеру уравнений и методам исследований динамические системы делят на конечномерные (с конечномерным фазовым пространством) и бесконечномерные (распределённые). Конечномерные динамические системы можно подразделить на консервативные и диссипативные, что соответствует различной физической природе реальных систем. Консервативные динамические системы - это системы с сохраняющимся фазовым объёмом. Их образуют гамильтоновы системы с не зависящей от времени функцией Гамильтона. У диссипативных систем фазовый объём не сохраняется, в их фазовом пространстве существует ограниченная область (шар диссипации), в которую попадает навсегда точка на любой траектории.

Динамические  системы можно также подразделить на системы с непрерывным и дискретным временем. Динамические  системы с непрерывным временем задаётся обычно системой ОДУ х = f(х) (х - скалярная либо векторная величина, точкой обозначено дифференцирование по времени), в которой для каждой начальной точки х имеется единственное решение. Состояние равновесия х0 такой динамической системы определяется из уравнения f(х0) = 0. Поведение в окрестности состояния равновесия О зависит от свойств линеаризованной  вблизи  О системы, а именно от корней  λ1, λ2,.., λn  характеристического уравнения

Динамическая система

где δij - символ Кронекера. Пусть Re λj отрицательны для р и положительны для q корней, причём р + q = n. Если р = n (q = n), точка О называется устойчивым (неустойчивым) узлом. Близкие к этой точке в фазовом пространстве траектории притягиваются к ней в случае устойчивого узла, когда время t → +∞, а в случае неустойчивого узла - при t→ -∞. Если р≠0, q≠0, точка О называется седлом. Через неё проходят две поверхности: р-мерная WsO и q-мерная WuO, называемые устойчивым и неустойчивым многообразиями седла О, а также устойчивой и неустойчивой сепаратрисами. Эти поверхности образованы траекториями, стремящимися к О при t →+∞ и t → -∞ соответственно.  Остальные траектории уходят из седла при t → ± ∞ (рис. 1). 

Динамическая система

Траектория,   лежащая одновременно в WsO  WuO (и не совпадающая с О), называется гомоклинической или петлёй сепаратрисы седла. В одномерных моделях непрерывной среды гомоклинической траектории отвечает стационарная бегущая волна в форме солитона.

Периодическое решение х = р(t) системы х = f(х) имеет следующее свойство: р(t) = р(t+Т) для любого t, где Т - период. Этому решению соответствует замкнутая траектория L в фазовом пространстве. Поведение траекторий в окрестности периодической траектории L характеризуется мультипликаторами γ1, ..., γn, которые находятся с помощью решений линеаризованной на L системы. Один из них, например γn, всегда равен 1. Если |γi | < 1 (|γi | > 1) для всех i = 1, 2, ..., n - 1, то траектория L устойчива (неустойчива). Если р мультипликаторов лежат внутри, а q - вне единичного круга в комплексной плоскости, р + q = n - 1, то L - траектория седлового типа. Она лежит в пересечении двух поверхностей: (р + 1)-мерной WsL и (q + 1)-мерной WuL (устойчивой и неустойчивой сепаратрис). Поверхность WsL (WuL) состоит из траекторий, стремящихся к L при t → +∞ (t →- ∞). При n = 3 и р = q=1 поверхность WsL (WuL) топологически эквивалентна цилиндру, если мультипликатор γ положителен и больше 1 (рисунок 2).

Динамическая система

Поведение траекторий в окрестности L изучают, рассматривая их следы на (n - 1)-мерной поверхности D, пересекающей (без касания) L и близкие к ней траектории. Если точка m0 на D достаточно близка к L, то траектория, проходящая через m0, пересекает D в другой точке m, называемой отображением последования (отображением Пуанкаре) (рис. 3).

Динамическая система

Линеаризация отображения Пуанкаре в точке пересечения L с D описывается матрицей Якоби. Её собственные  значения  γ1, ..., γn-1   являются мультипликаторами замкнутой траектории L.

Устойчивые и неустойчивые многообразия периодических траекторий могут пересекаться.   Траектория,  принадлежащая пересечению WsL и WuL и отличная от L, является гомоклинической. Если это пересечение происходит без касания, то в окрестности гомоклинической траектории имеется множество разнообразных неустойчивых траекторий, среди которых содержится бесконечное множество замкнутых траекторий седлового типа. Подобное множество траекторий типично для динамической системы с хаотической динамикой. Таким образом, наличие гомоклинической траектории может служить критерием существования хаотических режимов в динамической системе (смотри Динамический хаос).

Динамические  системы с дискретным временем обычно задаются отображением G фазового пространства в себя: xn+1 = G(xn). Тогда эволюционный оператор φt, t = m, - просто m раз применённое отображение G: φnx=G(G(...G(x)...)). Например, простейшая модель динамики популяций описывает плотность числа членов (n + 1)-й генерации,  хn+1,  как  функцию числа хn предыдущей генерации: хn+1 = ахn - bх2n, а, b > 0 - параметры задачи. В зависимости от значений а и b эта динамическая система может демонстрировать либо регулярную (все аттракторы - периодические траектории), либо  хаотическую динамику.

Отображение Пуанкаре фактически определяет систему с дискретным временем. Например, динамические системы, описывающие действие периодического возмущения на систему ОДУ, которые можно записать в виде х = f(х,θ), θ = ω, где f - периодическая по θ вектор-функция, всегда порождают отображение Пуанкаре. Для таких систем существует глобальная секущая поверхность Пуанкаре θ = 0, которую каждая траектория пересекает бесконечное число раз. Поведение траекторий в системе с непрерывным временем полностью определяется динамической системой с дискретным временем.

Важная часть теории динамической системы - эргодическая теория, которая описывает статистические свойства траекторий. Если они неустойчивы, точки на разных траекториях расходятся в процессе эволюции на существенное расстояние друг от друга, несмотря на близость начальных состояний, система демонстрирует «чувствительную зависимость» от начальных условий. (Заметим, что именно с неустойчивостью траекторий связана невозможность долгосрочного предсказания погоды.) Поскольку невозможно определить начальное состояние с бесконечной точностью (всегда существуют мельчайшие ошибки измерения или запоминания), необходимо изучать поведение не отдельных траекторий, а пучков траекторий, проходящих сквозь «пятно» начальных условий. Эти траектории могут обладать различными свойствами, и разнообразие этих свойств можно описать в терминах  вероятностных  распределений.

А. Пуанкаре первым высказал в качественной форме мысль, что при неустойчивости траекторий динамической системы речь может идти об их статистических свойствах такого же характера, какие к тому времени уже упоминались в работах Л. Больцмана и Дж. У. Гиббса по статистической механике. Подобные идеи были реализованы в эргодической теории и успешно осуществляют роль «моста» между детерминированным и случайным «мирами».

С помощью теории динамической системы изучены и объяснены многие нелинейные явления в природе и технике, такие как динамический хаос, синхронизация периодических и хаотических колебаний, образование диссипативных структур, пространственно-временной хаос в моделях распределённых систем, конкуренция мод в нейронных сетях мозга и т. д.

Лит.: Качественная теория динамических систем второго порядка. М., 1967; Корнфельд И. П., Синай Я. Г., Фомин С. В. Эргодическая теория. М., 1980; Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления. М., 1985-1991. [Т. 1-9]: Динамические системы; Каток А., Хассельблатт Б. Введение в современную  теорию  динамических  систем. М., 1999.

В. С. Афраймович,  М. И.  Рабинович.