Капиллярные явления

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред (в системах жидкость - жидкость, жидкость - газ или пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с минимальной поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, так как роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью другой жидкости или твёрдого тела (например, со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами другой жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда - участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением ∆р - разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса r кривизны поверхности и определяется формулой Лапласа: ∆р = 2σ/r, где σ - поверхностное натяжение. Если граница раздела фаз плоская (r = ∞), то в условиях механического равновесия системы давления с обеих сторон границы раздела равны и ∆р = 0. В случае вогнутой поверхности жидкости (r < 0) давление в жидкости ниже, чем давление в граничащей с ней фазе и ∆р < 0; для выпуклой поверхности (r > 0) ∆р > 0.

Реклама

Капиллярные явленияЕсли стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск - полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой h уравновешивает капиллярное давление ∆р. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где r = ∞ и ∆р = 0) определяется соотношением: h = 2σcosθ/∆pgr, где θ - краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), ∆р - разность плотностей жидкости 1 в капилляре и внешней среды 2, g - ускорение свободного падения.

Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, например, рост больших капель в облаках за счёт малых.

К характерным капиллярным явлениям относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и других процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка - один из распространённых процессов химической технологии. В системах с непараллельными стенками (или капиллярах конического сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, например при существовании градиента температуры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.

Капиллярные явленияКапиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации - наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление р насыщенного пара над ними ниже, чем давление насыщенного пара р0 при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем р0, давлениях.

Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются капиллярными явлениями. Они лежат также в основе многих технологических процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.

Впервые капиллярные явления были исследованы Леонардо да Винчи. Систематического наблюдения и описания капиллярные явления в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского общества. Основы теории капиллярных явлений заложены в трудах Т. Юнга, П. Лапласа, а их термодинамическое рассмотрение осуществил Дж. Гиббс (1876).

Лит.: Адамсон А. Физическая химия поверхностей. М., 1979; Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М., 1986.             

А. М. Емельяненко, Н.В. Чураев.