Аналитическая Химия
АНАЛИТИЧЕСКАЯ ХИМИЯ, наука об определении химического состава веществ и материалов и, в некоторой степени, химического строения соединений. Аналитическая химия развивает общие теоретические основы химического анализа, разрабатывает методы определения компонентов изучаемого образца, решает задачи анализа конкретных объектов. Основная цель аналитической химии - создание методов и средств, обеспечивающих, в зависимости от поставленной задачи, точность, высокую чувствительность, экспрессность и избирательность анализа. Разрабатываются и методы, позволяющие анализировать микрообъекты, проводить локальный анализ (в точке, на поверхности и так далее), анализ без разрушения образца, на расстоянии от него (дистанционный анализ), непрерывный анализ (например, в потоке), а также устанавливать, в виде какого химического соединения и в какой физической форме существует в образце определяемый компонент (вещественный химический анализ) и в состав какой фазы он входит (фазовый анализ). Важные тенденции развития аналитической химии- автоматизация анализов, особенно при контроле технологических процессов, и математизация, в частности широкое использование компьютеров.
Реклама
Структура науки. Можно выделить три крупных направления аналитической химии: общие теоретические основы; разработка методов анализа; аналитическая химия отдельных объектов. В зависимости от цели анализа различают качественный химический анализ и количественный химический анализ. Задача первого - обнаружение и идентификация компонентов анализируемого образца, задача второго - определение их концентраций или масс. В зависимости от того, какие именно компоненты нужно обнаружить или определить, различают изотопный анализ, элементный анализ, структурно-групповой (в том числе функциональный) анализ, молекулярный анализ, вещественный анализ, фазовый анализ. По природе анализируемого объекта различают анализ неорганических и органических веществ, а также биологических объектов.
В теоретических основах аналитической химии существенное место занимает так называемая хемометрика, в том числе метрология химического анализа. Теория аналитической химии включает также учения об отборе и подготовке аналитических проб, о составлении схемы анализа и выборе методов, о принципах и путях автоматизации анализа, применения ЭВМ, а также принципы рационального использования результатов химического анализа. Особенность аналитической химии - изучение не общих, а индивидуальных, специфических свойств и характеристик объектов, что обеспечивает избирательность многих аналитических методов. Благодаря тесным связям с достижениями физики, математики, биологии и различных областей техники (это особенно касается методов анализа) аналитическая химия превращается в дисциплину на стыке наук. Часто используют и иные названия этой дисциплины - аналитика, аналитическая наука и др.
В аналитической химии различают методы разделения, определения (обнаружения) и гибридные методы анализа, обычно сочетающие методы первых двух групп. Методы определения удобно подразделять на химические методы анализа (гравиметрический анализ, титриметрический анализ, электрохимические методы анализа, кинетические методы анализа), физические методы анализа (спектроскопический, ядерно-физический и др.), биохимические методы анализа и биологический метод анализа. Химические методы основаны на химических реакциях (взаимодействие вещества с веществом), физические — на физических явлениях (взаимодействие вещества с излучениями, потоками энергии), биологические используют отклик организмов или их фрагментов на изменения в окружающей среде.
Практически все методы определения основаны на зависимости каких-либо доступных измерению свойств веществ от их состава. Поэтому важное направление аналитической химии - отыскание и изучение таких зависимостей с целью использования их для решения аналитических задач. При этом почти всегда необходимо найти уравнение связи между свойством и составом, разработать способы регистрации свойства (аналитического сигнала), устранить помехи со стороны других компонентов, исключить мешающее влияние различных факторов (например, флуктуации температуры). Величину аналитического сигнала переводят в единицы, характеризующие количество или концентрацию компонентов. Измеряемыми свойствами могут быть, например, масса, объём, поглощение света, сила тока.
Большое внимание уделяется теории методов анализа. Теория химических методов базируется на представлениях о нескольких основных типах химических реакций, широко используемых в анализе (кислотно-основной, окислительно-восстановительной, комплексообразования), и нескольких важных процессах (осаждения, растворения, экстракции). Внимание к этим вопросам обусловлено историей развития аналитической химии и практической значимостью соответствующих методов. Поскольку, однако, доля химических методов уменьшается, а доля физических, биохимических и биологических растёт, большое значение приобретает совершенствование теории методов последних групп и интегрирование теоретических аспектов отдельных методов в общей теории аналитической химии.
История развития. Испытания материалов проводились ещё в глубокой древности; например, руды исследовали с целью установления их пригодности для плавки, различные изделия - для определения содержания в них золота и серебра. Алхимики 14-16 века выполнили огромный объём экспериментальных работ по изучению свойств веществ, положив начало химическим методам анализа. В 16-17 веках (период ятрохимии) появились новые химические способы обнаружения веществ, основанные на реакциях в растворе (например, открытие ионов серебра по образованию осадка с хлорид-ионами). Родоначальником научной аналитической химии считают Р. Бойля, который ввёл понятие «химический анализ».
До середины 19 века аналитическая химия была основным разделом химии. В этот период были открыты многие химические элементы, выделены составные части некоторых природных веществ, установлены законы постоянства состава и кратных отношений, закон сохранения массы. Шведский химик и минералог Т. Бергман разработал схему систематического качественного анализа, активно использовал сероводород как аналитический реагент, предложил методы анализа в пламени с получением перлов. В 19 веке систематический качественный анализ усовершенствовали немецкие химики Г. Розе и К. Фрезениус. Этот же век ознаменовался огромными успехами в развитии количественного анализа. Был создан титриметрический метод (французский химик Ф. Декруазиль, Ж. Гей-Люссак), значительно усовершенствован гравиметрический анализ, разработаны методы анализа газов. Большое значение имело развитие методов элементного анализа органических соединений (Ю. Либих). В конце 19 века сложилась теория аналитической химии, в основу которой было положено учение о химическом равновесии в растворах с участием ионов (главным образом В. Оствальд). К этому времени преобладающее место в аналитической химии заняли методы анализа ионов в водных растворах.
В 20 веке разработаны методы микроанализа органических соединений (Ф. Прегль). Был предложен полярографический метод (Я. Гейровский, 1922). Появилось много физических методов, например масс-спектрометрический, рентгеновский, ядерно-физический. Большое значение имело открытие хроматографии (М. С. Цвет, 1903) и создание разных вариантов этого метода, в частности распределительной хроматографии (А. Мартин и Р. Синг, 1941).
В России и в СССР большое значение для аналитической химии имел учебник И. А. Меншуткина «Аналитическая химия» (выдержал 16 изданий). М. А. Ильинский и Л. А. Чугаев ввели в практику органические аналитические реагенты (конец 19 - начало 20 века), Н.А. Тананаев разработал капельный метод качественного анализа (одновременно с австрийским химиком Ф. Файглем, 1920-е годы). В 1938 Н.А. Измайлов и М. С. Шрайбер впервые описали тонкослойную хроматографию. Большой вклад российские учёные внесли в изучение комплексообразования и его аналитического использования (И. П. Алимарин, А. К. Бабко), в теорию действия органических аналитических реагентов, в развитие масс-спектромегрии, методов фотометрии, атомно-абсорбционной спектрометрии (Б. В. Львов), в аналитическую химию отдельных элементов, особенно редких и платиновых, и ряда объектов - веществ высокой чистоты, минерального сырья, металлов и сплавов.
Требования практики всегда стимулировали развитие аналитической химии. Так, в 1940-1970-х годах в связи с необходимостью анализа ядерных, полупроводниковых и других материалов высокой чистоты были созданы такие чувствительные методы, как радиоактивационный анализ, искровая масс-спектрометрия, химико-спектральный анализ, инверсионная вольтамперометрия, обеспечивающие определение до 10-7—10-8% примесей в чистых веществах, т. е. 1 часть примеси на 10-1000 миллиард частей основного вещества. Для развития чёрной металлургии, особенно в связи с переходом к скоростному конвертерному производству стали, решающее значение приобрела экспрессность анализа. Использование так называемых квантометров - фотоэлектрических приборов для многоэлементного оптического спектрального или рентгеновского анализа - позволяет проводить анализ в ходе плавки.
Необходимость анализа сложных смесей органических соединений обусловила интенсивное развитие газовой хроматографии, которая позволяет анализировать сложнейшие смеси, содержащие несколько десятков и даже сотен веществ. Аналитическая химия в значительной мере способствовала овладению энергией атомного ядра, изучению космоса и океана, развитию электроники, прогрессу биологических наук.
Предмет исследования. Важную роль играет развитие теории отбора проб анализируемых материалов; обычно вопросы пробоотбора решаются совместно со специалистами по изучаемым веществам (например, с геологами, металловедами). Аналитическая химия разрабатывает способы разложения проб - растворение, сплавление, спекание и пр., которые должны обеспечивать полное «вскрытие» образца и не допускать потерь определяемых компонентов и загрязнений извне. В задачи аналитической химии входит развитие техники таких общих операций анализа, как измерение объёмов, фильтрование, прокаливание. Одна из задач аналитической химии - определение направлений развития аналитического приборостроения, создание новых схем и конструкций приборов (что чаще всего служит завершающей стадией разработки метода анализа), а также синтез новых аналитических реактивов.
Для количественного анализа очень важны метрологические характеристики методов и приборов. В связи с этим аналитическая химия изучает проблемы градуировки, изготовления и использования образцов сравнения (в том числе стандартных образцов) и других средств обеспечения правильности анализа. Существенное место занимает обработка результатов анализа, особенно компьютерная. Для оптимизации условий анализа используют теорию информации, теорию распознавания образов и другие разделы математики. Компьютеры применяют не только для обработки результатов, но и для управления приборами, учёта помех, градуировки, планирования эксперимента; существуют аналитические задачи, решаемые только с помощью компьютеров, например идентификация молекул органических соединений с использованием экспертных систем.
Аналитическая химия определяет общие подходы к выбору путей и методов анализа. Разрабатываются способы сопоставления методов, определяются условия их взаимозаменяемости и сочетания, принципы и пути автоматизации анализа. Для практического использования анализа необходима разработка представлений о его результате как показателе качества продукции, учение об экспрессном контроле технологических процессов, создание экономичных методов. Большое значение для аналитиков, работающих в различных отраслях экономики, имеют унификация и стандартизация методов. Разрабатывается теория оптимизации количества информации, необходимой для решения аналитических задач.
Методы анализа. В зависимости от массы или объёма анализируемого образца методы разделения и определения иногда подразделяют на макро-, микро- и ультрамикрометоды.
К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния других компонентов образца. Особенно важно так называемое относительное концентрирование отделение малых количеств определяемых компонентов от значительно больших количеств основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамических, или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетических параметрах. Для разделения применяют главным образом хроматографию, экстракцию, осаждение, дистилляцию, а также электрохимические методы, например электроосаждение. Методы определения - основная группа методов аналитической химии. В основе методов количественного анализа лежит зависимость какого-либо доступного измерению свойства, чаще всего физического, от состава образца. Эта зависимость должна описываться определённым и известным образом. Быстро развиваются гибридные методы анализа, объединяющие разделение и определение. Например, газовая хроматография с различными детекторами - важнейший метод анализа сложных смесей органических соединений. Для анализа смесей труднолетучих и термически нестойких соединений более удобна высокоэффективная жидкостная хроматография.
Для анализа необходимы разнообразные методы, поскольку каждый из них имеет свои достоинства и ограничения. Так, чрезвычайно чувствительные радиоактивационные и масс-спектральные методы требуют сложной и дорогостоящей аппаратуры. Простые, доступные и очень чувствительные кинетические методы не всегда обеспечивают нужную воспроизводимость результатов. При оценке и сопоставлении методов, при выборе их для решения конкретных задач принимаются во внимание многих факторы: метрологические параметры, сфера возможного использования, наличие аппаратуры, квалификация аналитика, традиции и др. Важнейшие среди этих факторов такие метрологические параметры, как предел обнаружения или диапазон концентраций (количеств), в котором метод даёт надёжные результаты, и точность метода, т. е. правильность и воспроизводимость результатов. В ряде случаев большое значение имеют «многокомпонентные» методы, позволяющие определять сразу большое число компонентов, например атомно-эмиссионный и рентгеновский спектральный анализ, хроматография. Роль таких методов возрастает. При прочих равных условиях предпочитают методы прямого анализа, т. е. не связанного с химической подготовкой пробы; однако часто такая подготовка необходима. Например, предварительное концентрирование исследуемого компонента позволяет определять меньшие его концентрации, устранять трудности, связанные с негомогенным распределением компонента в пробе и отсутствием образцов сравнения.
Особое место занимают методы локального анализа. Существенную роль среди них играют рентгеноспектральный микроанализ (электронный зонд), масс-спектрометрия вторичных ионов, оже-спектроскопия и другие физические методы. Они имеют большое значение, в частности при анализе поверхностных слоёв твёрдых материалов или включений в горных породах.
Специфическую группу составляют методы элементного анализа органических соединений. Органическое вещество тем или иным способом разлагают, а его компоненты в виде простейших неорганических соединений (СО2, Н2О, NН3 и др.) определяют обычными методами. Применение газовой хроматографии позволило автоматизировать элементный анализ; для этого выпускаются С-, Н-, N-, S-анализаторы и другие приборы-автоматы. Анализ органических соединений по функциональным группам (функциональный анализ) выполняется различными химическими, электрохимическими, спектральными (ЯМР или ИК-спектроскопия) или хроматографическими методами.
При фазовом анализе, т. е. определении химических соединений, образующих отдельные фазы, последние предварительно выделяют, например с помощью избирательного растворителя, а затем полученные растворы анализируют обычными методами; весьма перспективны физические методы фазового анализа без предварительного разделения фаз.
Практическое значение. Химический анализ обеспечивает контроль многих технологических процессов и качества продукции в различных отраслях промышленности, играет огромную роль при поиске и разведке полезных ископаемых, в добывающей промышленности. С помощью химического анализа контролируется чистота окружающей среды (почвы, воды и воздуха). Достижения аналитической химии используют в различных отраслях науки и техники: атомной энергетике, электронике, океанологии, биологии, медицине, криминалистике, археологии, космических исследованиях. Велико экономическое значение химического анализа. Так, точное определение легирующих добавок в металлургии позволяет экономить ценные металлы. Переход на непрерывный автоматический анализ в медицинской и агрохимической лабораториях даёт возможность резко увеличить скорость анализов (крови, мочи, вытяжек из почв и так далее) и уменьшить численность сотрудников лабораторий.
Лит.: Основы аналитической химии: В 2 кн./ Под редакцией Ю. А. Золотова. М., 2002; Аналитическая химия: В 2 т. М., 2003-2004.
Ю. А. Золотов.