Давление света

ДАВЛЕНИЕ CBETA, давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса электромагнитного поля веществу. Гипотеза о существовании давления света была впервые высказана И. Кеплером в 17 веке для объяснения отклонения хвостов комет от Солнца. Теория давления света в рамках классической электродинамики дана Дж. К. Максвеллом в 1873. В ней давления света объясняется рассеянием и поглощением электромагнитной волны частицами вещества. В рамках квантовой теории давления света - результат передачи импульса фотонами телу.

При нормальном падении света на поверхность твёрдого тела давления света р определяется формулой:

р = S(1 + R)/с, где

S - плотность потока энергии (интенсивность света), R - коэффициент отражения света от поверхности, с - скорость света. В обычных условиях давление света малозаметно. Даже в мощном лазерном луче (1 Вт/см2) давления света порядка 10-4 г/см2. Широкий по сечению лазерный луч можно сфокусировать, и тогда сила давления света в фокусе луча может удерживать на весу миллиграммовую частичку.

Реклама

Экспериментально давление света на твёрдые тела было впервые исследовано П. Н. Лебедевым в 1899 году. Основные трудности в экспериментальном обнаружении давления света заключались в выделении его на фоне радиометрических и конвективных сил, величина которых зависит от давления окружающего тело газа и при недостаточном вакууме может превышать давление света на несколько порядков. В опытах Лебедева в вакуумированном (давление порядка 10-4 мм ртутного столба) стеклянном сосуде на тонкой серебряной нити подвешивались коромысла крутильных весов с закреплёнными на них тонкими дисками-крылышками, которые облучались. Крылышки изготавливались из различных металлов и слюды с идентичными противоположными поверхностями. Последовательно облучая переднюю и заднюю поверхности крылышек различной толщины, Лебедев сумел нивелировать остаточное действие радиометрических сил и получить удовлетворительное (с ошибкой ± 20%) согласие с теорией Максвелла. В 1907-10 Лебедев исследовал давление света на газы.

Давление  света играет большую роль в астрономических и атомных явлениях. Давление  света в звёздах наряду с давлением газа обеспечивает их стабильность, противодействуя силам гравитации. Действием давления света объясняются некоторые формы кометных хвостов. При испускании фотона атомами происходит так называемая световая отдача, и атомы получают импульс фотона. В конденсированных средах давление света может вызывать ток носителей заряда (смотри Увлечение электронов фотонами). Давление солнечного излучения пытаются использовать для создания разновидности космического движителя - так называемого солнечного паруса.

Специфические особенности давления света обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглотив фотон, атом получает импульс в направлении лазерного пучка и переходит в возбуждённое состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов атом получает постоянно импульсы, направленные вдоль светового луча, что и создаёт давление света.

Сила F резонансного давления света на атом определяется как импульс, переданный потоком фотонов с плотностью N в единицу времени: F = Nћkσ, где ћk = 2πћ/λ - импульс одного фотона, σ ≈ λ2 - сечение поглощения резонансного фотона, λ - длина волны света, k - волновое число, ћ - постоянная Планка. При относительно малых плотностях излучения резонансное давление света прямо пропорционально интенсивности света. При больших плотностях потока фотонов N происходит насыщение поглощения и насыщение резонансного давления света (смотри Насыщения эффект). В этом случае давление света создают фотоны, спонтанно испускаемые атомами со средней частотой γ (обратной времени жизни возбуждённого атома) в случайном направлении. Сила светового давления перестаёт зависеть от интенсивности, а определяется скоростью спонтанных актов испускания: F≈ћkγ. Для типичных значений γ ≈ 108 с-1 и λ ≈0,6 мкм сила давления света .F≈5·10-3 эВ/см; при насыщении резонансное давление света может создавать ускорение атомов до 105 g (g - ускорение свободного падения). Столь большие силы позволяют селективно управлять атомными пучками, варьируя частоту света и по-разному воздействуя на атомы с малоразличающимися частотами резонансного поглощения. В частности, удаётся сжимать максвелловское распределение по скоростям, убирая из пучка высокоскоростные атомы. Свет лазера направляют навстречу атомному пучку, подбирая при этом частоту и форму спектра излучения так, чтобы давление света тормозило быстрые атомы с большим смещением резонансной частоты (смотри Доплера эффект). Резонансное давление света можно использовать для разделения газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, атомы одного из которых находятся в резонансе с излучением, резонансные атомы под действием давления света перейдут в дальнюю камеру.

Некоторые особенности имеет резонансное давление света на атомы, помещённые в поле интенсивной стоячей волны. С квантовой точки зрения стоячая волна, образованная встречными потоками фотонов, вызывает толчки атома, обусловленные поглощением фотонов и их стимулированным испусканием. Средняя сила, действующая на атом, при этом не равна нулю вследствие неоднородности поля на длине волны. С классической точки зрения сила давления света обусловлена действием пространственно неоднородного поля на наведённый им атомный диполь. Эта сила минимальна в узлах, где дипольный момент не наводится, и в пучностях, где градиент поля обращается в нуль. Максимальная сила давления света по порядку величины равна F≈ ±Ekd (знаки относятся к синфазному и противофазному движению диполей с моментом d по отношению к полю с напряжённостью Е). Эта сила может достигать гигантских значений: d≈ 1 дебай, λ≈0,6 мкм и Е≈ 106 В/см сила F≈5∙102 эВ/см. Поле стоячей волны расслаивает пучок атомов, проходящий сквозь луч света, так как диполи, колеблющиеся в противофазе, двигаются по различным траекториям, подобно атомам в Штерна-Герлаха опыте. На атомы, двигающиеся вдоль лазерного луча, действует радиальная сила давления света, обусловленная радиальной неоднородностью плотности светового поля. Как в стоячей, так и в бегущей волне происходит не только детерминированное движение атомов, но и их диффузия в фазовом пространстве, так как поглощение и испускание фотонов - квантовые случайные процессы. Резонансное давления света могут испытывать и квазичастицы в твёрдых телах: электроны, экситоны и др.

Лит.: Лебедев П. Н. Собр. соч. М., 1963; Эшкин А. Давление лазерного излучения // Успехи физических наук. 1973. Т. 110. Вып. 1; Казанцев А. П. Резонансное световое давление // Там же. 1978. Т. 124. Вып. 1; Летохов В. С., Миногин В. Г. Давление лазерного излучения на атомы. М., 1986.

С. Г. Пржибельский.