Кислород (химический элемент)

КИСЛОРОД (латинский Oxygenium), О, химический  элемент VI группы короткой формы (16-й группы длинной формы) периодической системы, относится к халькогенам; атомный номер 8, атомная масса 15,9994. Природный кислород состоит из трёх изотопов: 16О (99,757%), 17О (0,038%) и 18О (0,205%). Преобладание в смеси изотопов наиболее лёгкого 16О связано с тем, что ядро атома 16О состоит из 8 протонов и 8 нейтронов. Равное число протонов и нейтронов обусловливает высокую энергию их связи в ядре и наибольшую стабильность ядер 16О по сравнению с остальными. Искусственно получены радиоизотопы с массовыми числами 12-26.

Историческая справка. Кислород  получили в 1774 году независимо К. Шееле (путём прокаливания нитратов калия КNО3 и натрия NaNO3, диоксида марганца MnO2 и других веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb3О4 и оксида ртути HgO). Позднее, когда было установлено, что кислород входит в состав кислот, А. Лавуазье предложил название oxygène (от греческого όχύς - кислый и γεννάω - рождаю, отсюда и русское название «кислород»).

Реклама

Распространённость в природе. Кислород  - самый распространённый химический элемент на Земле: содержание химически связанного кислорода в гидросфере составляет 85,82% (главным образом в виде воды), в земной коре -49% по массе. Известно более 1400 минералов, в состав которых входит кислород. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы - карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (например, известняк, мрамор), а также различные оксиды природные, гидроксиды природные и горные породы (например, базальт). Молекулярный кислород составляет 20,95% по объёму (23,10% по массе) земной атмосферы. Кислород  атмосферы имеет биологическое происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество кислорода, выделяемое растениями, компенсирует количество кислорода, расходуемое в процессах гниения, горения, дыхания.

Кислород  - биогенный элемент - входит в состав важнейших классов природных органических соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганических соединений скелета.

Свойства. Строение внешней электронной оболочки атома кислорода 2s24; в соединениях проявляет степени окисления -2, -1, редко +1, +2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О2-121 пм (координационное число 2). В газообразном, жидком и твёрдом состояниях кислород существует в виде двухатомных молекул О2. Молекулы О2 парамагнитны. Существует также аллотропная модификация кислорода - озон, состоящая из трёхатомных молекул О3.

В основном состоянии атом кислорода имеет чётное число валентных электронов, два из которых не спарены. Поэтому кислород, не имеющий низкой по энергии вакантной d-opбитали, в большинстве химических соединений двухвалентен. В зависимости от характера химической связи и типа кристаллической структуры соединения координационное число кислорода может быть разным: О (атомарный кислород), 1 (например, О2, СО2), 2 (например, Н2О, Н2О2), 3 (например, Н3О+), 4 (например, оксоацетаты Be и Zn), 6 (например, MgO, CdO), 8 (например, Na2О, Cs2О). За счёт небольшого радиуса атома кислород способен образовывать прочные π-связи с другими атомами, например с атомами кислорода (О2, О3), углерода, азота, серы, фосфора. Поэтому для кислорода одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).

Парамагнетизм молекул О2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О2 равен 2, т. е. связь между атомами кислорода двойная. Если при фотохимическом или химическом воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома кислорода два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О-О: от 120,74 пм в основном состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О-О и к усилению химической активности кислорода. Оба возбуждённых состояния молекулы О2 играют важную роль в реакциях окисления в газовой фазе.

Кислород  - газ без цвета, запаха и вкуса; tпл -218,3 °С, tкип -182,9 °С, плотность газообразного кислорода 1428,97 кг/дм3 (при 0 °С и нормальном давлении). Жидкий кислород - бледно-голубая жидкость, твёрдый кислород - синее кристаллическое вещество. При 0 °С теплопроводность 24,65-10-3 Вт/(мК), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрическая проницаемость газообразного кислорода 1,000547, жидкого 1,491. Кислород  плохо растворим в воде (3,1% кислорода по объёму при 20°С), хорошо растворим в некоторых фторорганических растворителях, например перфтордекалине (4500% кислорода по объёму при 0 °С). Значительное количество кислорода растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °С) резко понижается с уменьшением температуры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.

Кислород  обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в основном с образованием соответствующих оксидов (многие реакции, протекающие медленно при комнатной и более низких температурах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). Кислород  взаимодействует при нормальных условиях с водородом (образуется вода Н2О; смеси кислорода с водородом взрывоопасны - смотри Гремучий газ), при нагревании - с серой (серы диоксид SO2 и серы триоксид SO3), углеродом (углерода оксид СО, углерода диоксид СО2), фосфором (фосфора оксиды), многими металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в основном пероксиды и надпероксиды металлов, например пероксид бария ВаО2, надпероксид калия КО2). С азотом кислород взаимодействует при температуре выше 1200 °С или при воздействии электрического разряда (образуется монооксид азота NO). Соединения кислорода с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. Кислород  не образует химических соединений с гелием, неоном и аргоном. Жидкий кислород также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органические вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.

Кислород  образует три ионные формы, каждая из которых определяет свойства отдельного класса химических соединений: О2 - супероксидов (формальная степень окисления атома кислорода -0,5), О2- - пероксидных соединений (степень окисления атома кислорода -1, например водорода пероксид Н2О2), О2- - оксидов (степень окисления атома кислорода -2). Положительные степени окисления +1 и +2 кислород проявляет во фторидах О2F2 и OF2 соответственно. Фториды кислорода неустойчивы, являются сильными окислителями и фторирующими реагентами.

Молекулярный кислород является слабым лигандом и присоединяется к некоторым комплексам Fe, Со, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина - белка, который осуществляет перенос кислорода в организме теплокровных.

Биологическая роль. Кислород  как в свободном виде, так и в составе различных веществ (например, ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислительных процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.

Получение. В промышленных масштабах кислород производят путём сжижения и фракционной перегонки воздуха (смотри в статье Воздуха разделение), а также электролизом воды. В лабораторных условиях кислород получают разложением при нагревании пероксида водорода (2Р2О2 = 2Н2О + О2), оксидов металлов (например, оксида ртути: 2HgO = 2Hg + О2), солей кислородсодержащих кислот-окислителей (например, хлората калия: 2КlO3 = 2KCl + 3О2, перманганата калия: 2KMnO4 = К2MnO4 + MnO2 + О2), электролизом водного раствора NaOH. Газообразный кислород хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий кислород - в металлических сосудах Дьюара или в специальных цистернах-танках.

Применение. Технический кислород используют как окислитель в металлургии (смотри, например, Кислородно-конвертерный процесс), при газопламенной обработке металлов (смотри, например, Кислородная резка), в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый кислород используют в кислородно-дыхательных аппаратах на космических кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (смотри в статье Оксигенотерапия). Жидкий кислород применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного кислорода в некоторых фторорганических растворителях предложено использовать в качестве искусственных кровезаменителей (например, перфторан).

Лит.: Saunders N. Oxygen and the elements of group 16. Oxf., 2003; Дроздов А. А., Зломанов В. П., Мазо Г. Н., Спиридонов Ф. М. Неорганическая химия. М., 2004. Т. 2; Шрайвер Д., Эткинс П. Неорганическая химия. М., 2004. Т. 1-2.

В. П. Зломанов.